PHYSICS (SPECIFICATION A)

PA04

Unit 4 Waves, Fields and Nuclear Energy

Section A

Monday 28 January 2002 Morning Session
In addition to this paper you will require:

- an objective test answer sheet;
- a black or blue ball-point pen;
- a calculator;
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a blue or black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- Section A and Section B of this paper together carry 15% of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

The Data Sheet will replace this page

The Data Sheet will replace this page

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

1 A simple pendulum and a mass-spring system are taken to the Moon, where the gravitational field strength is less than on Earth. Which line, A to D, correctly describes the change, if any, in the period when compared with its value on Earth?

	period of pendulum	period of mass-spring system
\mathbf{A}	decrease	decrease
B	increase	increase
\mathbf{C}	no change	decrease
\mathbf{D}	increase	no change

2 A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2 \pi}$.
What is the magnitude of the acceleration when the body is at maximum displacement?

A zero
B $4 \pi^{2} A b^{2}$

C $A b^{2}$
D $\frac{4 \pi^{2} A}{b^{2}}$

3 A progressive wave in a stretched string has a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ and a frequency of 100 Hz . What is the phase difference between two points 25 mm apart?

A zero
B $\frac{\pi}{4} \mathrm{rad}$

C $\frac{\pi}{2} \mathrm{rad}$

D $\pi \mathrm{rad}$

4 Which one of the following statements about stationary waves is true?
A Particles between adjacent nodes all have the same amplitude.
B Particles between adjacent nodes are out of phase with each other.
C Particles immediately on either side of a node are moving in opposite directions.
D There is a minimum disturbance of the medium at an antinode.

5 In a double slit interference arrangement the fringe spacing is w when the wavelength of the radiation is λ, the distance between the double slits is s and the distance between the slits and the plane of the observed fringes is D. In which one of the following cases would the fringe spacing also be w ?

	wavelength	distance between slits	distance between slits and fringes
\mathbf{A}	2λ	$2 s$	$2 D$
B	2λ	$4 s$	$2 D$
\mathbf{C}	2λ	$2 s$	$4 D$
D	4λ	$2 s$	$2 D$

6 Using a diffraction grating with monochromatic light of wavelength 500 nm incident normally, a student found the 2 nd order diffracted maxima in a direction at 30° to the central bright fringe. What is the number of lines per metre on the grating?

A 2×10^{4}
B 2×10^{5}
C 4×10^{5}

D 5×10^{5}

7

A ball of mass m, which is fixed to the end of a light string of length l, is released from rest at X . It swings in a circular path, passing through the lowest point Y at speed v. If the tension in the string at Y is T, which one of the following equations represents a correct application of Newton's laws of motion to the ball at Y ?
A $T=\frac{m v^{2}}{l}-m g$
B $\quad T-m g=\frac{m v^{2}}{l}$
C $m g-T=\frac{m v^{2}}{l}$
D $T+\frac{m v^{2}}{l}=m g$

8 The gravitational potential difference between the surface of a planet and a point $P, 10 \mathrm{~m}$ above the surface, is $8.0 \mathrm{Jkg}^{-1}$. Assuming a uniform field, what is the value of the gravitational field strength in the region between the planet's surface and P?

A $\quad 0.80 \mathrm{Nkg}^{-1}$
B $\quad 1.25 \mathrm{Nkg}^{-1}$
C $8.0 \mathrm{Nkg}^{-1}$
D $80 \mathrm{Nkg}^{-1}$

9 If the potential difference between a pair of identical, parallel, conducting plates is known, what is the only additional knowledge required to determine the electric field strength between the plates?

A the permittivity of the medium between the plates
B the separation and area of the plates
C the separation and area of the plates and the permittivity of the medium between the plates
D the separation of the plates

10 Which one of the following statements about electric field strength and electric potential is incorrect?
A Electric potential is a scalar quantity.
B Electric field strength is a vector quantity.
C Electric potential is zero whenever the electric field strength is zero.
D The potential gradient is proportional to the electric field strength.

11 Which line, \mathbf{A} to \mathbf{D}, gives correct units for both magnetic flux and magnetic flux density?

	magnetic flux	magnetic flux density
\mathbf{A}	$\mathrm{Wb} \mathrm{m}^{-2}$	Wb
\mathbf{B}	Wb	T
\mathbf{C}	$\mathrm{~Wb} \mathrm{~m}^{-2}$	Tm^{-2}
\mathbf{D}	Tm^{-2}	$\mathrm{~Wb} \mathrm{~m}^{-2}$

12

A coil, mounted on an axle, has its plane parallel to the flux lines of a uniform magnetic field B, as shown. When a current I is switched on, and before the coil is allowed to move,

A there are no forces due to B on the sides SP and QR .
B there are no forces due to B on the sides PQ and RS.
C sides SP and QR tend to attract each other.
D sides PQ and RS tend to attract each other.

Three identical magnets P, Q and R are released simultaneously from rest and fall to the ground from the same height. P falls directly to the ground, Q falls through the centre of a thick conducting ring and R falls through a ring which is identical except for a gap cut into it. Which one of the statements below correctly describes the sequence in which the magnets reach the ground?

A P and R arrive together followed by Q .
B P and Q arrive together followed by R.
C P arrives first, followed by Q which is followed by R .
D All three magnets arrive simultaneously.

14 What is the mass difference of the ${ }_{3}^{7} \mathrm{Li}$ nucleus?
Use the following data:
mass of a proton $\quad=1.00728 \mathrm{u}$
mass of a neutron $=1.00867 \mathrm{u}$
mass of ${ }_{3}^{7} \mathrm{Li}$ nucleus $=7.01436 \mathrm{u}$
A $\quad 0.93912 \mathrm{u}$
B $\quad 0.04051 \mathrm{u}$
C $\quad 0.04077 \mathrm{u}$
D 0.04216 u

15 The moderator in a nuclear reactor is sometimes made of graphite. What is the purpose of the graphite?

A to absorb all the heat produced
B to decrease the neutron speeds
C to absorb α and γ radiations
D to prevent the reactor from going critical

THERE ARE NO ITEMS PRINTED ON THIS PAGE

THERE ARE NO ITEMS PRINTED ON THIS PAGE

