PHYSICS (SPECIFICATION A)
Unit 4 Waves, Fields and Nuclear Energy

ASSESSMENT and
PA04
QUALIFICATIONS ALLIANCE

Section A

Friday 20 January 20069.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed)

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book not on the answer sheet.

Information

- The maximum mark for this section is 30 .
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated Data Sheet is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

$\begin{aligned} & \text { magnitude of induced e.m.f. }=N \frac{\Delta \Phi}{\Delta t} \\ & I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \\ & V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}} \\ & \text { Mechanical and Thermal } \\ & \text { Properties } \\ & \text { the Young modulus }=\frac{\text { tensile stress }}{\text { tensile strain }}=\frac{F}{A} \frac{l}{e} \\ & \text { energy stored }=\frac{1}{2} F e \\ & \Delta Q=m c \Delta \theta \\ & \Delta Q=m l \\ & p V=\frac{1}{3} N m c^{2} \\ & \frac{1}{2} m c^{2}=\frac{3}{2} k T=\frac{3 R T}{2 N_{\mathrm{A}}} \end{aligned}$ Nuclear Physics and Turning Points in Physics $\begin{aligned} & \text { force }=\frac{e V_{\mathrm{p}}}{d} \\ & \text { force }=B e v \\ & \text { radius of curvature }=\frac{m v}{B e} \\ & \frac{e V}{d}=m g \\ & \text { work done }=e V \\ & F=6 \pi \eta r v \\ & I=k \frac{I_{0}}{x^{2}} \\ & \frac{\Delta N}{\Delta t}=-\lambda N \\ & \lambda=\frac{h}{\sqrt{2 m e V}} \\ & N=N_{0} \mathrm{e}^{-\lambda t} \\ & T_{\frac{1}{2}}=\frac{\ln 2}{\lambda} \\ & R=r_{0} A^{\frac{1}{3}} \end{aligned}$	$\begin{aligned} & E=m c^{2}=\frac{m_{0} c^{2}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}} \\ & I=I_{0}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}} \\ & t=\frac{t_{0}}{\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{1}{2}}} \end{aligned}$ Astrophysics and Medical Physics $\begin{aligned} & \text { Body Mass } / \mathrm{kg} \quad \text { Mean radius } / \mathrm{m} \\ & \text { Sun } \quad 2.00 \times 10^{30} \quad 7.00 \times 10^{8} \\ & \text { Earth } \quad 6.00 \times 10^{24} \quad 6.40 \times 10^{6} \\ & 1 \text { astronomical unit }=1.50 \times 10^{11} \mathrm{~m} \\ & 1 \text { parsec }=206265 \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m}= \\ & 3.26 \text { ly } \\ & 1 \text { light year }=9.45 \times 10^{15} \mathrm{~m} \\ & \text { Hubble constant }(H)=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1} \\ & \text { angle subtended by image at eye } \\ & M=\frac{\text { angle subtended by object at }}{\text { unaided eye }} \\ & M=\frac{f_{0}}{f_{\mathrm{c}}} \\ & m-M=5 \text { log } \frac{d}{10} \\ & \lambda_{\max } T=\text { constant }=0.0029 \mathrm{~m} \mathrm{~K} \\ & \nu=H d \\ & P=\sigma A T^{4} \\ & \frac{\Delta f}{f}=\frac{v}{c} \\ & \frac{\Delta \lambda}{\lambda}=-\frac{v}{c} \\ & R=\frac{2 G M}{c^{2}} \end{aligned}$	Medical Physics power $=\frac{1}{f}$ $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$ and $m=\frac{v}{u}$ intensity level $=10 \log \frac{I}{I_{0}}$ $I=I_{0} \mathrm{e}^{-\mu x}$ $\mu_{\mathrm{m}}=\frac{\mu}{\rho}$ Electronics Resistors Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.61 .82 .02 .2 2.42 .73 .03 .33 .63 .94 .34 .75 .15 .66 .2 6.87 .58 .29 .1 ohms and multiples that are ten times greater $\begin{aligned} & Z=\frac{V_{\mathrm{rms}}}{I_{\mathrm{rms}}} \\ & \frac{1}{C_{\mathrm{T}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots \\ & C_{\mathrm{T}}=C_{1}+C_{2}+C_{3}+\cdots \\ & X_{\mathrm{C}}=\frac{1}{2 \pi f C} \end{aligned}$ Alternating Currents $f=\frac{1}{T}$ Operational amplifier $G=\frac{V_{\text {out }}}{V_{\text {in }}} \quad$ voltage gain $G=-\frac{R_{\mathrm{f}}}{R_{1}} \quad$ inverting $G=1+\frac{R_{\mathrm{f}}}{R_{1}} \quad$ non-inverting $V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}\right)$ summing

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

You are advised to spend approximately $\mathbf{3 0}$ minutes on this section.

1 A ball bearing rolls on a concave surface, as shown in the diagram, in approximate simple harmonic motion. It is released from \mathbf{A} and passes through the lowest point \mathbf{B} before reaching C. It then returns through the lowest point \mathbf{D}. At which stage, $\mathbf{A}, \mathbf{B}, \mathbf{C}$ or \mathbf{D}, does the ball bearing experience maximum acceleration to the left?

2 A body moves with simple harmonic motion of amplitude A and frequency $\frac{b}{2 \pi}$.
What is the magnitude of the acceleration when the body is at maximum displacement?

A zero
B $4 \pi^{2} A b^{2}$
C $A b^{2}$
D $\frac{4 \pi^{2} A}{b^{2}}$

3 By approximately how many times is the wavelength of audible sound waves greater than the wavelength of light waves?

A $\quad 10^{2}$
B $\quad 10^{6}$
C $\quad 10^{10}$
D 10^{14}
4 A stationary wave is formed by two identical waves of frequency 300 Hz travelling in opposite directions along the same line. If the distance between adjacent nodes is 0.60 m , what is the speed of each wave?

A $\quad 180 \mathrm{~m} \mathrm{~s}^{-1}$
B $\quad 250 \mathrm{~m} \mathrm{~s}^{-1}$
C $\quad 360 \mathrm{~m} \mathrm{~s}^{-1}$
D $\quad 500 \mathrm{~m} \mathrm{~s}^{-1}$

5 Interference maxima produced by a double source are observed at a distance of 1.0 m from the sources. In which one of the following cases are the maxima closest together?

A red light of wavelength 700 nm from sources 4.0 mm apart
B sound waves of wavelength 20 mm from sources 50 mm apart
C blue light of wavelength 450 nm from sources 2.0 mm apart
D surface water waves of wavelength 10 mm from sources 200 mm apart
6 A $400 \mu \mathrm{~F}$ capacitor is charged so that the voltage across its plates rises at a constant rate from 0 V to 4.0 V in 20 s . What current is being used to charge the capacitor?

A $\quad 5 \mu \mathrm{~A}$
B $\quad 20 \mu \mathrm{~A}$
C $\quad 40 \mu \mathrm{~A}$
D $\quad 80 \mu \mathrm{~A}$
7 What is the value of the angular velocity of a point on the surface of the Earth?
A $\quad 1.2 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
B $\quad 7.3 \times 10^{-5} \mathrm{rad} \mathrm{s}^{-1}$
C $\quad 2.6 \times 10^{-1} \mathrm{rad} \mathrm{s}^{-1}$
D $\quad 4.6 \times 10^{2} \mathrm{rad} \mathrm{s}^{-1}$
8 The diagram shows two positions, \mathbf{X} and \mathbf{Y}, at different heights on the surface of the Earth.

Which line, \mathbf{A} to \mathbf{D}, in the table gives correct comparisons at \mathbf{X} and \mathbf{Y} for gravitational potential and angular velocity?

	gravitational potential at \mathbf{X} compared with Y	angular velocity at X compared with Y
A	greater	greater
B	greater	same
C	greater	smaller
D	same	same

9 A projectile moves in a gravitational field. Which one of the following is a correct statement for the gravitational force acting on the projectile?

A The force is in the direction of the field.
B The force is in the opposite direction to that of the field.
C The force is at right angles to the field.
D The force is at an angle between 0° and 90° to the field.

10 The diagram shows the path of an α particle deflected by the nucleus of an atom. Point P on the path is the point of closest approach of the α particle to the nucleus. Which one of the following statements about the α particle on this path is correct?

A Its acceleration is zero at P .
B Its kinetic energy is greatest at P .
C Its potential energy is least at P.
D Its speed is least at P .

11 Two parallel metal plates separated by a distance d have a potential difference V across them. What is the magnitude of the electrostatic force acting on a charge Q placed midway between the plates?

A $\frac{2 V Q}{d}$
B $\frac{V Q}{2 d}$
C $\frac{V Q}{d}$
D $\frac{Q d}{V}$

A coil, mounted on an axle, has its plane parallel to the flux lines of a uniform magnetic field B, as shown. When a current I is switched on, and before the coil is allowed to move,

A there are no forces due to B on the sides PQ and RS.
B there are no forces due to B on the sides SP and QR .
C sides SP and QR attract each other.
D sides PQ and RS attract each other.

13 Protons, each of mass m and charge e, follow a circular path when travelling perpendicular to a magnetic field of uniform flux density B. What is the time taken for one complete orbit?

A $\frac{2 \pi e B}{m}$
B $\frac{m}{2 \pi e B}$
C $\frac{e B}{2 \pi m}$
D $\frac{2 \pi m}{e B}$

14 The reaction shown below occurs when a proton and a deuterium nucleus, ${ }_{1}^{2} \mathrm{H}$, fuse to form a helium nucleus, ${ }_{2}^{3} \mathrm{He}$.

$$
{ }_{1}^{1} \mathrm{p}+{ }_{1}^{2} \mathrm{H} \longrightarrow{ }_{2}^{3} \mathrm{He}+Q
$$

If the energy released, Q, is 5.49 MeV , what is the mass of the helium nucleus?

$$
\begin{aligned}
\text { mass of }{ }_{1}^{2} \mathrm{H} \text { nucleus } & =2.01355 \mathrm{u} \\
\text { mass of proton } & =1.00728 \mathrm{u}
\end{aligned}
$$

1u is equivalent to 931.3 Me V

A $\quad 0.00589 \mathrm{u}$
B $\quad 3.01494 \mathrm{u}$
C $\quad 3.02083 \mathrm{u}$
D 3.02323 u

15 Which line, \mathbf{A} to \mathbf{D}, in the table gives a combination of materials that is commonly used for moderating, controlling and shielding respectively in a nuclear reactor?

	moderating	controlling	shielding
A	graphite	carbon	lead
B	cadmium	carbon	concrete
C	cadmium	boron	lead
D	graphite	boron	concrete

End of Section A

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

