

A S S E S S M E N T and Q U A L I F I C A T I O N S A L L I A N C E

Mark scheme June 2001

GCE

Physics A

Unit PHA3/P

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General 1

Unit 3: Practical

determine proportion of (electrical) energy transformed into heat	
by $\frac{mc\Delta\theta}{Vlt}$ (×100), with symbols defined (or word equation)	✓
circuit diagram to include means to control power dissipated in bulb, e.g. variable resistor/potentiometer/variable voltage supply and means to measure or monitor power dissipated, e.g. voltmeter or ammeter (to establish 24 W), otherwise both meters to be included	✓
method:	
to determine electrical energy transferred to bulb measure time, using stopwatch and, depending on approach, V and/or I	✓
to determine heat energy absorbed in water, measure temperature rise, $\Delta \theta$, using a thermometer	1
and mass of water, <i>m</i> , using a balance	✓
-	
control:	
prevent absorption of light energy in water using transparent container without lagging or lid take account of any heat energy transfer from the surroundings by	\checkmark
eliminating draughts, allowing thermal equilibrium to start etc	\checkmark
control power transformed in bulb (pd across bulb, current in bulb)	
by using a variable resistor/potentiometer/variable voltage supply	\checkmark
difficulties and how to overcome:	
reduce uncertainty in $\Delta \theta$ by	
making a cooling correction/allowing apparatus to reach	
thermal equilibrium (with surroundings) before	
starting/ensuring significant change in θ (making <i>t</i> large) reduce heat transfer to surroundings by	
ensuring that θ_{final} is not too large (making <i>m</i> large and not	
using insulation unless it is transparent e.g. bubble wrap	
account for any residual heating by	
waiting before measuring θ_{final} after switch off	
account for any evaporation loss by	
re-measuring at the end to obtain mean value of <i>m</i> account for effects of localised heating of water by stirring	
water (periodically),	
other good, non-trivial, physics any two	√ √

1		n	L
L	A	いろ	D

2 AO3	b			
(a)(ii)	accuracy	h_0 in range 550 mm to 850 mm		
(b)(i)				
(ii)	tabulation	M g or kg h /mm or cm etc	\checkmark \checkmark	
	readings	5 sets of <i>m</i> and <i>h</i> , smallest $m = 50$ g, then		
		values increasing in 20 g increments $(a_1, a_2, b_3, b_4, b_5)$	\checkmark \checkmark	
	significant figt	(no credit for $m = 0, h = 0$) <i>ures</i> all h (including h_0) to nearest mm	1	7
	significani figi	m es an m (including n_0) to hearest min	•	/
AO3	с			
(c)	table	5 suitable sets tabulated (not $(h_0 - h) = 0, M = 0$)	\checkmark	
	axes	marked $(h_0-h)/mm$ (or p/mm), M/g	\checkmark \checkmark	
	scale	suitable (e.g. 8×8)	\checkmark \checkmark	
	points	5 points plotted correctly		
		with smooth best-fit line drawn	\checkmark	
	quality	at least 4 points to $\pm 2 \text{ mm of (best-fit) line}$	\checkmark	7
(d)(i)	either	candidate draws straight line through origin, then		
		explains graph confirms $M \propto deflection$		
		because line passes through origin		
	or	candidate draws straight line with intercept, then		
	0.	explains graph does not confirm $M \propto deflection$		
		because line <u>does not pass through origin</u>		
	or	candidate draws curve, then		
		explains graph does not confirm $M \propto deflection$		
		because line is <u>not straight</u>	\checkmark	
(1)('')	1. (1		
(d)(ii)	reading from graph: p correct from graph to $\pm \frac{1}{2}$ grid square			
	<i>p</i> correct from	graph to $\pm \frac{1}{2}$ grid square	v	2
AO3d				
(e)(i)	diagram show	ing metre ruler made vertical using set-square	\checkmark	
	in two different (mutually perpendicular) directions			
	[or (diagram) checks against spring, (explains in 2 dimensions]			
	[or (diagram) use of set square to avoid			
	paralla	ax/line of sight error $(1 \checkmark \text{only})$]		
		1 . 11	\checkmark	
(e)(ii)	(deflecting) force on ruler is smaller			
	hence p smaller \checkmark [or inverse plot, force smaller, hence p larger]			
	Lor inverse pro	, force smaller, hence p larger]		
(e)(iii)	sensible test th	at establishes whether ruler is bent	\checkmark	
/	both before and after the experiment			
	(e.g. unload ru	ler, check h_0 is same as before)		6
				<u>22</u>