Surname					Other	Names				
Centre Number						Cand	idate Number			
Candidate Signature										·

For Examiner's Use

General Certificate of Education June 2008 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 9 Nuclear Instability: Electronics Option

PHA9/W

Wednesday 11 June 2008 9.00 am to 10.15 am

For this paper you must have:

- a calculator
- a pencil and a ruler
- a data sheet loose insert.

Time allowed: 1 hour 15 minutes

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 40. This includes up to two marks for the Quality of Written Communication.
- The marks for questions are shown in brackets.
- A Data Sheet is provided as a loose insert to this question paper.
- You are expected to use a calculator where appropriate.
- Question 1(c) and 5(b) should be answered in continuous prose. In these questions you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.

For Examiner's Use								
Question	Mark	Question	Mark					
1								
2								
3								
4								
5								
Total (Co	olumn 1)							
Total (Co	olumn 2) -							
	Quality of Written Communication							
TOTAL								
Examine	r's Initials							

SECTION A: NUCLEAR INSTABILITY

Answer all of this question.

1	(a)	rays.	sotope of technetium $^{99}_{43}\text{Tc}^{\text{m}}$, which is in a metastable state, decays emitting only γ When the isotope is placed 20 cm from a γ ray detector the count rate is							
		25 counts per second. The background count rate is 120 counts per minute. Calculate the count rate, in counts per second, when the detector is placed 30 cm from the isotope.								
		•••••	(3 marks)							
1	(b)	(i)	Calculate the approximate radius of a nucleus of $^{99}_{43}\text{Tc}^{\text{m}}$, given that the nuclear radius of $^{28}_{14}\text{Si}$ is $3.7 \times 10^{-15}\text{m}$.							
1	(b)	(ii)	State one method by which the nuclear radius of ²⁸ ₁₄ Si could be determined experimentally.							
			(4 marks)							
			(4 marks)							

1	(c)	Explain why sources of β radiation often also produce γ rays of discrete frequencies.					
		You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer to part (c).					
		(3 marks)					

Turn over for the next question

Turn over ▶

SECTION B: ELECTRONICS

Answer all questions.

2 Figure 1 shows a half-wave rectified power supply. The transformer in the power supply has a peak output of $3.0\,\mathrm{V}$ at a frequency of $50\,\mathrm{Hz}$. The power supply is connected to a $68\,\Omega$ load resistor. The pd across the load resistor is displayed on an oscilloscope.

Figure 1

2 (a) Explain why the peak voltage across the load resistor is about 2.3 V.

(1 mark)

2 (b) The oscilloscope was set to a voltage sensitivity of 1 V cm⁻¹ and a time base of 5 ms cm⁻¹.

Draw on the grid the trace that would be seen on the oscilloscope.

(2 marks)

2	(c)	capa	noothing capacitor is to be added to the circuit. The use of a capacitor of citance 22 µF is suggested for this circuit. Explain, using appropriate calculations, uitability of such a capacitor.
		•••••	
			(3 marks)
2	(d)		udent attempts to set up a half-wave rectification circuit, but uses a wrong ponent, X as shown in Figure 2 .
			Figure 2
			$ \begin{cases} 3.0 \text{V peak} \\ 50 \text{Hz} \end{cases} $
2	(d)	(i)	Name the component X.
2	(u)	(1)	Explain how the properties of X affect the rectification produced by the circuit when X is
2	(d)	(ii)	in the dark,
2	(d)	(iii)	illuminated by bright light.
			(3 marks)

Turn over >

3	A capacitor is marked 25 V, 0.1 mF.							
3	(a)	Explain why this capacitor should not be connected to a 24 V rms ac supply.						
			•••••					
			•••••					
		(2 ma	 rks)					
3	(b)	Calculate the reactance of this capacitor when connected to a 50 Hz ac supply.						
		(1 mc	 ark)					
3	(c)	Apart from cost, give two disadvantages of an electrolytic capacitor compared with mica capacitor with the same capacitance.	a					
		disadvantage 1						
		uisuu vuituige 1						
		disadvantage 2						
		(2 ma	 rkc)					
		(2 ma	r ns j					

4 (a)	Draw a non-inverting voltage amplifier circuit containing an operational ar amplifier circuit is required to have a voltage gain of +50. Give suitable vaccomponents required.	nplifier. The alues for the
4 (b)	The bandwidth of an amplifier increases when negative feedback is used. Explain the terms: bandwidth	(5 marks)

Turn over >

5 The circuit shown in **Figure 3** operates a temperature indicator on the front of a freezer. The switching temperature for the indicator is -5 °C.

Figure 3

The graph shows how the resistance of the thermistor varies with the temperature.

resistance/ Ω

5	(a)	Calculate the resistance of the resistor, R, which would cause the switching temperature to be -5°C .
		(2
5	(b)	(2 marks) Explain the state of the two LEDs at a temperature of -10 °C.
		You may be awarded additional marks to those shown in brackets for the quality of written communication in your answers.
		(3 marks)
5	(c)	When the red LED is on, the voltage across it is 1.6 V.
5	(c)	(i) Calculate the current through its 500Ω current limiting resistor.

5	(c)	(ii)) (ii)	(ii)	(ii)	(ii)	(ii)	(ii)	The 500Ω resistor has a power rating of $0.125W$. The student is concerned that this may not be high enough. Show by calculation that this is not a suitable resistor.
			(2 marks)						
			Quality of Written Communication (2 marks)						
			END OF QUESTIONS						

PHYSICS (SPECIFICATION A) Unit 9 Nuclear Instability: Electronics Option **Data Sheet**

PHA9W

Fundamen	ıtal constants a	ınd valı	ues		Mechanics and Applied	Fields, Waves, Quantum
Quantity Symbol Value Units					Physics	Phenomena
1~ ′		Symboi c	Value 3.00×10^8	$ _{\text{m s}^{-1}}$	v = u + at	
speed of light in vacuo permeability of free space		l	$4\pi \times 10^{-7}$	H m ⁻¹		$g = \frac{F}{m}$
permittivity of free space		ϵ_0	8.85×10^{-12}	F m ⁻¹	$s = \left(\frac{u+v}{2}\right)t$	1
charge of electron		$\stackrel{\circ}{e}$	1.60×10^{-19}	l C	` - '	$g = -\frac{GM}{r^2}$
the Planck constant		h	6.63×10^{-34}	Js	$s = ut + at^2$	r^2
gravitational constant		G	6.67×10^{-11}	N m ² kg ⁻²	$s = ut + \frac{at^2}{2}$ $v^2 = u^2 + 2as$	ΔV
	ro constant	N_{A}	6.02×10^{23}	mol ⁻¹	$u^2 - u^2 + 2as$	$g = -\frac{\Delta V}{\Delta x}$
molar gas c		R	8.31	J K ⁻¹ mol ⁻¹	v = u + 2u3	
1	ann constant	k	1.38×10^{-23}	J K ⁻¹	$F = \frac{\Delta(m\nu)}{\Delta t}$	$V = -\frac{GM}{r}$
the Stefan of the Wien co		σ α	5.67×10^{-8} 2.90×10^{-3}	m K	$\Delta t = \Delta t$	1
electron res		$m_{\rm e}$	9.11×10^{-31}	kg	P = Fv	$a = -(2\pi f)^2 x$
ž .	to 5.5×10^{-4} u)	""e).11 × 10	-	nower outnut	$v = \pm 2\pi f \sqrt{A^2 - x^2}$
	arge/mass ratio	e/m_c	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{power\ output}{power\ input}$	<u> </u>
proton rest		$m_{ m p}$	1.67×10^{-27}	kg	power input	$x = A \cos 2\pi f t$
(equivalent	to 1.00728u)		_		$\omega = \frac{v}{c} - 2\pi f$	$T = 2\pi\sqrt{\frac{m}{L}}$
1 *	ge/mass ratio	$e/m_{\rm p}$	9.58×10^{7}	C kg ⁻¹	$w = \frac{r}{r} = 2\pi i g$	' <u>~</u>
neutron res		$m_{\rm n}$	1.67×10^{-27}	kg	$\omega = \frac{v}{r} = 2\pi f$ $a = \frac{v^2}{r} = r\omega^2$	$T = 2\pi\sqrt{\frac{I}{g}}$
	to 1.00867u)	_	0.01	N. 1 -1	$a = \frac{v}{r} = r\omega^2$	18
	al field strength	g	9.81 9.81	N kg ⁻¹ m s ⁻²	l '	$\lambda = \frac{\omega s}{D}$
acceleration	due to gravity	g u	9.81 1.661×10^{-27}	m s -	$I = \sum mr^2$	_
(1u is equiv		u	1.001 ^ 10	ng ng	1 - 2 1111	$d \sin \theta = n\lambda$
931.3 MeV)					$E_{\mathbf{k}} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
Fundamen	ıtal particles				$\omega_2 = \omega_1 + \alpha t$	-
Class	Name	C		aat an aran		${}_1n_2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$
Ciass	rume	Syli	Symbol Rest energy		$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$_{1}n_{2}=\frac{n_{2}}{n_{1}}$
				⁄leV	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	l
photon	photon	γ	0		$\begin{bmatrix} \omega_2 - \omega_1 + 2\omega 0 \end{bmatrix}$	$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	$\nu_{\rm e}$	0		$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$	n
		ν_{μ}	0			E = hf
	electron	e^{\pm}	0.	510999	$T = I\alpha$	$hf = \phi + E_{k}$
	muon	μ^{\pm}	10)5.659	angular momentum = Iω	$hf = E_1 - E_2$
mesons	pion	π^{\pm}	13	39.576	$W = T\theta$	h h h
	-	π^0	13	34.972	$P = T\omega$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
	kaon			3.821		_ 1
		K^0		7.762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
baryons	proton			38.257	angular momentum = Tt	17-0-0
baryons	· .	p		39.551	$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron	П	93	17.331	$\Delta W = p\Delta V$	-
Duaz : 4	-£ 1				$pV^{\gamma} = \text{constant}$	$ \epsilon = \frac{E}{O} $
Properties	or quarks				work done per ovele - area	Q
Туре	Charge	Baryon S		rangeness	work done per cycle = area of loop	$ \epsilon = I(R+r) $
	-	nun	nber	•		1 1 1 1
	2		1	•	input power = calorific	$\frac{1}{R} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} + \cdots$
u	$+\frac{2}{3}$	+	1 / 3	0	value × fuel flow rate	R_{T} R_1 R_2 R_3
d	$-\frac{1}{3}$	+	$\frac{1}{3}$	0		$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$
	$-\frac{1}{3}$	+		1	indicated power as (area of $p - V$	$P = I^2 R$
S	$-\frac{7}{3}$	+	3	-1	$loop) \times (no.\ of\ cycles/s) \times$	
					(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$
Geometrical equations					Edulation and the state of	· -
and lowests and					friction power = indicated power - brake power	F = 1 Q
$arc\ length = r\theta$					power – orake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
	$ce of circle = 2\pi$	r			$\mathbf{w} = \mathbf{o} = \mathbf{o}$	
area of circl	$e = \pi r^2$				$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$					∠in ∠in	F = BIl
1 .					maximum possible	F = BQv
volume of cylinder = $\pi r^2 h$					1	i ~
area of sphere = $4\pi r^2$					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	$Q = Q_0 e^{-t/RC}$
volume of s	$phere = \frac{4}{3} \pi r^3$				' н	$\Phi = BA$ Turn over
					i	Turn over

magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$

energy stored =
$$\frac{1}{2}$$
 Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_p}{d}$$

force = Bev

radius of curvature = $\frac{mv}{Be}$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

 $F=6\pi\eta rv$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

 Body
 Mass/kg
 Mean radius/m

 Sun
 2.00×10^{30} 7.00×10^8

 Earth
 6.00×10^{24} 6.40×10^6

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$ unaided eye

$$M = \frac{f_0}{f_0}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

$$v = Hd$$

$$P = \sigma A T^4$$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$\frac{\Delta \lambda}{1} = -\frac{\nu}{1}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

 $power = \frac{1}{f}$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu}$

 $\mu_{\rm m} = \frac{\mu}{\alpha}$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm s}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing