General Certificate of Education January 2009 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

PA04

Section A

Wednesday 21 January 2009 9.00 am to 10.30 am

For this paper you must have:

- an objective test answer sheet
- a black ball-point pen
- a calculator
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do not use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A Data Sheet is provided as a loose insert.
- The question paper/answer book for Section B is enclosed within this question paper.

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions. You are to select the most appropriate answer in each case.

You are advised to spend about 30 minutes on this section.

- 1 The tip of each prong of a tuning fork emitting a note of frequency 320 Hz vibrates in simple harmonic motion with an amplitude of 0.50 mm. What is the speed of each tip when its displacement is zero?
 - A zero B 0.32π mm s⁻¹ C 160π mm s⁻¹
 - **D** $320\pi \text{ mm s}^{-1}$
- 2 What is the phase difference between the acceleration and the displacement for a particle moving with simple harmonic motion?
 - **A** $\frac{\pi}{2}$ radians **B** π radians
 - C $\frac{3\pi}{2}$ radians
 - **D** 2π radians
- 3 Which one of the following statements is **not** an application of polarisation?
 - A to show the strain in materials such as glass
 - **B** to reduce glare when taking photographs
 - C to transmit and receive radio waves
 - **D** to transmit and receive ultrasonic waves
- 4 Two identical waves, having a period of 2.5×10^{-3} s, and travelling in opposite directions along the same line, form a stationary wave. If the distance between adjacent nodes is 0.40 m, what is the speed of each wave?
 - A $160 \,\mathrm{m\,s}^{-1}$
 - **B** $320 \,\mathrm{m\,s}^{-1}$
 - $C = 400 \,\mathrm{m \, s^{-1}}$
 - **D** $480 \,\mathrm{m \, s^{-1}}$

5 A parallel beam of monochromatic light is directed normally at a plane transmission grating which has 600 lines per millimetre. A third order diffracted beam is observed at an angle of 54° to the zero order diffracted beam.

Which line, **A** to **D**, in the table gives the wavelength of the light and the angle of diffraction of the first order beam?

	wavelength / nm	angle of diffraction of first order
Α	450	16°
В	450	18°
С	520	16°
D	520	18°

Turn over for the next question

When switch S is closed, the capacitor of capacitance C begins to charge from the cell of emf \in through the resistor of resistance R. The initial current in the circuit is I.

The time taken for the current to decrease to $\frac{I}{2}$ is determined by the value(s) of

A \in and R.

6

- **B** \in and *C*.
- **C** *C* and *R*.
- **D** *C* alone.

7 A revolving mountain top restaurant turns slowly, completing a full rotation in 50 minutes. A man sits in the restaurant 15 m from the axis of rotation. What is the speed of the man?

$$\mathbf{A} \qquad \frac{\pi}{100} \,\mathrm{m\,s^{-1}}$$
$$\mathbf{B} \qquad \frac{3\pi}{5} \,\mathrm{m\,s^{-1}}$$

5

$$C \qquad \frac{\pi}{200} \mathrm{m\,s}^{-1}$$

 $\mathbf{D} \qquad \frac{\pi}{1500} \,\mathrm{m\,s}^{-1}$

8 The gravitational field strength at the surface of the Earth, of radius *R*, is *g* and the weight of an object on the surface is *W*. The object is now taken to a distance of 3*R* from the centre of the Earth. Which line, **A** to **D**, in the table gives the weight of the object and the gravitational field strength at this distance?

	weight	gravitational field strength
Α	$\frac{W}{9}$	<u> </u>
В	<u>W</u> 9	$\frac{g}{3}$
С	$\frac{W}{4}$	<u> </u>
D	$\frac{W}{3}$	$\frac{g}{3}$

- 9 Which one of the following is a quantity that can be resolved into different directions?
 - A electrical potential
 - **B** gravitational potential
 - **C** electric field strength
 - **D** induced emf

Turn over for the next question

10 The graph shows how the gravitational potential, V, varies with the distance, r, from the centre of the Earth.

What does the gradient of the graph at any point represent?

- A the mass of the Earth
- **B** the magnitude of the gravitational constant
- **C** the magnitude of the gravitational field strength at that point
- **D** the potential energy at the point where the gradient is measured
- 11 A positive ion, with a charge/mass ratio of $2.40 \times 10^7 \,\mathrm{C \, kg^{-1}}$, is stationary in a vertical electric field. Which line, A to D, in the table shows correctly both the strength and the direction of the electric field?

	electric field strength /V m ⁻¹	direction
Α	4.09×10^{-7}	upwards
B	4.09×10^{-7}	downwards
C	2.45×10^{6}	upwards
D	2.45×10^{6}	downwards

The diagram shows how the electric potential varies along a line XY in an electric field. What will be the electric field strength at a point P on XY, which is mid-way between R and S?

 $5.0 \,\mathrm{Vm^{-1}}$ Α

12

- $10 \, \mathrm{V \, m^{-1}}$ В
- $20 \, \mathrm{V \, m^{-1}}$ С
- $30 \, V \, m^{-1}$ D
- An α particle moves in a circular path at a speed of $7.5 \times 10^6 \text{m s}^{-1}$ in a plane perpendicular to a uniform magnetic field of flux density 1.5×10^{-2} T. The force acting on the α particle is 13
 - A
 - В
 - 1.8×10^{-14} N parallel to the direction of the field. 3.6×10^{-14} N parallel to the direction of the field. 1.8×10^{-14} N perpendicular to the direction of the field. 3.6×10^{-14} N perpendicular to the direction of the field. С
 - D
- The mass of the ${}_{4}^{7}$ Be beryllium nucleus is 7.01473 u. What is the binding energy per nucleon of this nucleus? 14

Use information from the Data Sheet.

- $1.6 \,\mathrm{MeV} \,\mathrm{nucleon}^{-1}$ Α
- 5.4 MeV nucleon⁻¹ B
- 9.4 MeV nucleon⁻¹ С
- $12.5 \,\mathrm{MeV}\,\mathrm{nucleon}^{-1}$ D

Turn over for the next question

- In a thermal reactor, induced fission is caused by the $^{235}_{92}$ U nucleus capturing a neutron, undergoing fission and producing more neutrons. Which one of the following statements is 15 true?
 - Α To sustain the reaction a large number of neutrons is required per fission.
 - B
 - С
 - The purpose of the moderator is to absorb all the heat produced. The neutrons required for induced fission of $^{235}_{92}$ U should be slow neutrons. The purpose of the control rods is to slow down neutrons to thermal speeds. D

END OF SECTION A

PA04

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy Data Sheet

Fundamental constants and values					Mechanics and Applied	Fields, Waves, Quantum
Quantity		Symbol	Value	Units	Physics	Phenomena
speed of light in vacuo		c	3.00×10^{8}	m s ⁻¹	v = u + at	F
permeability of free space		μ_0	$4\pi \times 10^{-7}$	$H m^{-1}$	$s = \left(\frac{u+v}{v}\right) t$	$g = \frac{1}{m}$
permittivity	permittivity of free space		8.85×10^{-12}	$\mathbf{F} \mathbf{m}^{-1}$	$3 = \left(\frac{1}{2}\right)^{t}$	G - GM
the Planck constant		e h	1.00×10 6.63 × 10 ⁻³⁴		at^2	$g = -\frac{1}{r^2}$
gravitational constant		G	6.67×10^{-11}	$N m^2 kg^{-2}$	$s = ut + \frac{u}{2}$	41/
the Avogadı	the Avogadro constant		6.02×10^{23}	mol ⁻¹	$x^2 - x^2 + 2\pi z$	$g = -\frac{\Delta V}{\Delta x}$
molar gas co	molar gas constant		8.31	J K ⁻¹ mol ⁻¹	v = u + 2us	
the Boltzma	the Boltzmann constant		1.38×10^{-2}	$J K^{-1}$	$F = \frac{\Delta(m\nu)}{2}$	$V = -\frac{GM}{r}$
the Wien co	the Stefan constant		2.07×10^{-3}	wm ⁻ K	$\Delta t = \Delta t$	$(2-\alpha^2)$
electron rest	electron rest mass		9.11×10^{-31}	kg	P = Fv	$a = -(2\pi f) x$
(equivalent	to 5.5×10^{-4} u)	Ŭ			power output	$\nu = \pm 2\pi f \sqrt{A^2 - x^2}$
electron cha	arge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹	$efficiency = \frac{1}{power input}$	$x = A \cos 2\pi f t$
proton rest	mass	$m_{\rm p}$	1.67×10^{-2}	kg		m
proton char	ge/mass ratio	elm	9.58×10^7	$C k q^{-1}$	$\omega = \frac{v}{r} = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{k}}$
neutron rest	t mass	$m_{\rm p}$	1.67×10^{-27}	kg		$T = 2 - \sqrt{l}$
(equivalent	to 1.00867u)				$a = \frac{v^2}{1-v^2} = r\omega^2$	$T = 2\pi\sqrt{\frac{g}{g}}$
gravitationa	l field strength	g	9.81	N kg ⁻¹	r	$\lambda = \frac{\omega s}{\omega s}$
acceleration	due to gravity	g	9.81	$m s^{-2}$	$I = \sum_{n=1}^{\infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} $	D
(1) is equiv	alent to	u	1.001 × 10	ĸg	$I = \angle mr$	$d\sin\theta = n\lambda$
931.3 MeV)					$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
Fundamen	tal narticlas				$\omega_2 = \omega_1 + \alpha t$	$\sin \theta_1 c_1$
						${}_1n_2 = \frac{1}{\sin \theta_2} = \frac{1}{c_2}$
Class	Name	Symbol H		Rest energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$n_2 = \frac{n_2}{n_2}$
				MeV	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$n_{2} - n_{1}$
photon	photon	γ	()		$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	ν _e	()	$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	
		ν_{μ}	()	$T - I \alpha$	E = hf $hf = \phi + F$
	electron	e- +	().510999	$I = I\alpha$	$hJ = \varphi + E_k$ $hf - F_k = F_k$
	muon	μ- ±	105.659		angular momentum = $I\omega$	$D_1 = D_1 = D_2$
mesons	mesons pion			139.370	$W = T\theta$	$\lambda = \frac{n}{p} = \frac{n}{my}$
	kaon	л V±	-	102 821	$P = I\omega$	
	KaOli	K K ⁰		107 762	angular impulse = change of	$c = \frac{1}{\sqrt{\mu_c \varepsilon_c}}$
baryons	proton	n		138 757	angular momentum = Tt	1m0c0
Uaiyons	proton	P n		30.237	$\Delta Q = \Delta U + \Delta W$	Electricity
	neutron				$\Delta W = p \Delta V$	
Properties	of quarks				pv = constant	$\epsilon = \frac{E}{O}$
Tuna	Chanas	Dar		Stuanaan	work done per cycle = area	\mathcal{Q}
Туре	Charge	Баг	ryon . nber	strangeness	of loop	$\epsilon = I(K+T)$
		nun	noci		input nower - calorific	$\frac{1}{1} = \frac{1}{1} + \frac{1}{1} + \frac{1}{1} + \cdots$
u	$+\frac{2}{3}$	+	$\frac{1}{3}$	0	$value \times fuel flow rate$	R_{T} R_{1} R_{2} R_{3}
d	$-\frac{1}{3}$	+	$\frac{1}{3}$ 0		, , , , , , , , , , , , , , , , , , ,	$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$
s	$-\frac{1}{3}$	+	$\frac{1}{3}$	-1	indicated power as (area of $p - V$	$P = I^2 R$
	3		J	-	(no, of cylinders)	
Geometric	al equations				(110. 0) (yunuers)	$E = \overline{Q} = \overline{d}$
ana lawadi					friction power = indicated	$r_{-} 1 Q$
$arc \ length = r\theta$					power – brake power	$L = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^2}$
circumference of circle = $2\pi r$					$W = O_{11} - O_{22}$	
area of circle = πr^2					$efficiency = \frac{1}{Q_{in}} = \frac{2 \ln 2 \text{ out}}{Q_{in}}$	$E = \frac{1}{2} QV$
area of cylinder = $2\pi rh$						F = BIl
<i>volume of cylinder</i> = $\pi r^2 h$					maximum possible	F = BQv
area of sphere = $4\pi r^2$					$efficiency = \frac{T_{\rm H} - T_{\rm C}}{-}$	$Q = Q_0 \mathrm{e}^{-t/RC}$
<i>volume of sphere</i> = $\frac{4}{3}\pi r^3$					$T_{\rm H}$	$\Phi = BA$ Then over
	-					iurn over

M/Jan09/INSERT TO PA04

This insert should **not** be sent to the examiner